4 research outputs found

    Momentum and energy preserving integrators for nonholonomic dynamics

    Get PDF
    In this paper, we propose a geometric integrator for nonholonomic mechanical systems. It can be applied to discrete Lagrangian systems specified through a discrete Lagrangian defined on QxQ, where Q is the configuration manifold, and a (generally nonintegrable) distribution in TQ. In the proposed method, a discretization of the constraints is not required. We show that the method preserves the discrete nonholonomic momentum map, and also that the nonholonomic constraints are preserved in average. We study in particular the case where Q has a Lie group structure and the discrete Lagrangian and/or nonholonomic constraints have various invariance properties, and show that the method is also energy-preserving in some important cases.Comment: 18 pages, 6 figures; v2: example and figures added, minor correction to example 2; v3: added section on nonholonomic Stoermer-Verlet metho

    Explicit Lie-Poisson integration and the Euler equations

    Full text link
    We give a wide class of Lie-Poisson systems for which explicit, Lie-Poisson integrators, preserving all Casimirs, can be constructed. The integrators are extremely simple. Examples are the rigid body, a moment truncation, and a new, fast algorithm for the sine-bracket truncation of the 2D Euler equations.Comment: 7 pages, compile with AMSTEX; 2 figures available from autho
    corecore